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While the faithful transmission of genetic information requires a fidelity and stability of DNA that
is involved in translation into proteins, it has become evident that a large part of noncoding DNA
is organized in repeated sequences, which often exhibit a pronounced instability and dynamics.
This applies both to longer repeated sequences, minisatellites (about 10-100 base pairs), and
microsatellites (mostly 2-4 base pairs). Although these satellite DNAs are abundantly distributed
in all kinds of organisms, no clear function has been discerned for them. However, extension of
trinucleotide microsatellite sequences has been associated with several severe human disorders,
such as Fragile X syndrome and Huntington's disease. Rare alleles of a minisatellite sequence

have been reported to be associated with the ras oncogene leading to an increased risk for
several human cancers. A dynamic behavior of repeated DNA sequences also applies to
telomeres, constituting the ends of the chromosomes. Repeated DNA sequences protect the
chromosome ends from losing coding sequences at cell divisions. The telomeres are maintained
by the enzyme telomerase. Somatic cells, however, lose telomerase function and gradually die.
Cancer cells have activated telomerase and therefore they acquire immortality. Environ Health
Perspect 105(Suppl 4):781-789 (1997)
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Introduction

Since around 1970 our concept of DNA
has undergone a pronounced modification
in two respects: the stability of DNA and
the organization of the genetic material in
living organisms. Previously DNA was
considered a highly stable entity, which
was subjected only to alterations through
rare mutational events. This notion was
supported by experimental evidence in the
1950s, which showed that DNA replication
proceeds with an extremely low frequency
of errors. The stability and precision of
the genetic system were manifested by the
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formulation of the "Central Dogma,"
which holds that the flow of information
in the cells proceeds from DNA to RNA
and from RNA to proteins.

In the 1970s it was found that DNA
was far more dynamic than anticipated and
that the central dogma was not invariably
correct. The detection of reverse transcrip-
tase showed that RNA could be transcribed
to DNA; this had important consequences
for many cellular processes, such as the
insertion of mobile elements, the founda-
tion of pseudogenes from mRNA, and
retroviral replication.

The other area of DNA research, for
which the last two decades have provided a
fundamentally new concept of DNA, con-
cerns the organization of the genetic mater-
ial in higher organisms. The vast majority
of DNA-about 97% in human DNA-
does not give rise to any proteins. The func-
tioning of all this DNA has been obscure
from the beginning and it was named "self-
ish DNA" by Orgel and Crick (1). Other
names, such as junk DNA, parasite DNA,
and extra DNA illustrate the confusion
about the functioning of this DNA. Some
organisms have a remarkably high amount
of DNA. Thus amphibians can have up
to 20 times more DNA than man (1).
The reason for this spectacular variation

in DNA content between organisms is
still obscure.

Some of the noncoding DNA occurs as
intrones, which are spliced away before
translation, but most of it is organized as
repeated sequences, which somewhat consti-
tute "biological dynamite," in the sense that
they are apt to exhibit a high degree of insta-
bility and thus are responsible for much of
the instability ofDNA mentioned above.

Research in more recent years on
repeated sequences of DNA has given an
insight into the behavior and biological
consequences of changes in these units.
Alterations, particularly of microsatellites,
have been shown to be connected with sev-
eral severe human disorders. Although it
appears that these repeated sequences do
not provide any obvious benefit to the
organism, the fact that their alteration can
have severe effects nevertheless indicates
some kind of a function behind the occur-
rence of these seemingly nonsense DNA
sequences. In the present report an attempt
will be made to summarize current knowl-
edge of mini- and microsatellites as well as
some other repeated sequences of DNA.

Major Types of Repeated
DNA Sequences
Amplification of DNA is not restricted to
noncoding sequences; many coding genes
are also amplified or can go through such a
process. Amplification of nuclear onco-
genes, leading to an increase of their
expression, is connected with the induction
of cancer. In many cases an amplification
of genes constitutes a defense mechanism
for detoxication of exogenous agents, i.e.,
amplification of metallothioneins against
heavy metals and the amplification up to
1000 times of the dehydrofolate gene giv-
ing resistance to methotrexate (2). In
Drosophila, a specific amplification control-
ling element is responsible for the amplifi-
cation of corion genes during the early
development stages of the embryo.

The ribosomal DNA in the proximal
heterochromatin of Drosophila occurs as a
highly amplified gene, and the optimal num-
ber of genes is gradually restored in case of a
deletion of a part of the heterochromatin.

Concerning shorter and mostly noncod-
ing repeats of DNA, which are the main
subject of this presentation, we can recog-
nize two classes-minisatellites: up to
100 bp, but mostly about 9 to 30 bp; and
microsatellites: 2 to 4 bp, telomeres and
telomerlike sequences, and centromeres.
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MinisatelJites
Occurrence. Minisatellites are regions of
the genome with noncoding, tandemly
repeated sequences of up to about 100 bp
(3,4). The number of minisatellite loci in
the human genome has been estimated to
be 1500 per haploid genome (5,6). Many
of these loci exhibit an extreme polymor-
phism due to variation in the number of
repeats, called variable number of tandem
repeats (VNTR). The background of this
genetic variability is a mutation rate that
can exceed 10% per gamete (7). Jeffreys et
al. (3) detected and developed DNA
probes that are able to simultaneously
detect large numbers of hypervariable mini-
satellite loci. Hybridization to digested and
electrophoresed DNA with these core
sequences at low stringency detects a pat-
tern of fragments that is unique for unre-
lated individuals. These properties of
minisatellites provide the background for
the "fingerprint analyses" (8), which have
found several important applications,
including as a powerful tool in forensic
medicine, as markers for linkage studies
in genetic analyses, and as a means for
establishing kinship between individuals,
including paternity determination. Through
the development of a system of polymerase
chain reaction (PCR) (minisatellite variant
repeat [MVR], below) by Jeffreys and co-
workers, it is possible to analyze single
pairs of minisatellite alleles (9). This has
enabled a measurement of changes in the
number of repeats and also the occurrence,
frequency and location of point mutations
along the sequence of repeats in a single
allele. This development has been impor-
tant to the study of the mechanism for
genetic changes of these repeated sequences
and the genetic instability involved.

The minisatellites of the human
genome are not evenly distributed but are
primarily localized at the ends of the chro-
mosomes, which implies a limitation in the
use of these sequences in linkage analyses
(10). This subtelomeric localization of the
human minisatellites is correlated with a
high density of chiasmata during meiosis,
indicating an association with meiotic
crossing over (11,12). The human X chro-
mosome has few minisatellites, but there is
a cluster of minisatellites in the X-Y pair-
ing region (13). Clusters of minisatellites
at the ends of the chromosomes do not
apply for the mouse genome (14).

Techniques of Typing MinisateUlites.
As mentioned above, variation in the
minisatellite pattern of length mutations
can be studied by means of restriction

analyses and the use of probes, which can
hybridize with a large number of minisatel-
lite loci. The analytical technique has been
further developed by the use ofPCR ampli-
fication, giving an additional sensitivity.
However, the disadvantage of PCR analysis
of length variation is that many minisatel-
lite alleles are too long for efficient amplifi-
cation. Jeffreys et al. (9) have introduced a
new PCR system, MVR, which has implied
a solution of that problem and provided
increased sensitivity by enabling analyses of
internal and often subtle variations of inter-
nal repeats. The method is based on the use
of primers, which are specific for repeat
variants and which enable a successive PCR
analysis of long stretches of repeated
sequences with occasional variants. Such
internal variation is present in almost all
minisatellites.

Mutational Changes. The mutation
frequency of minisatellites does not seem to
be dependent on the length of the allele in
the same way as in microsatellites (15).
Short arrays of repeats can be stable over
millions of years (16), while long alleles can
have an extremely high frequency of muta-
tional changes (up to 15%). The high insta-
bility of some human minisatellites seems
to be a property of the repeated sequence
itself, as indicated by the fact that the
unstable human minisatellite MS1 retained
its instability also after being inserted into
the genome of yeast, Saccharomyces (17). In
five highly unstable loci the rate of length-
change mutations was related to their
observed heterozygosity, indicating that the
changes were selectively neutral.

Mutational changes of minisatellites are
not randomly distributed, but occur pre-
dominantly at one end of the locus. This
peculiar polarity was revealed by MVR-
PCR analysis of three minisatellite loci (9).
The occurrence of such polar hot spots was
also found in pedigree analysis of germline
mutations (18).

Different mechanisms of germline
length changes of minisatellites can be visu-
alized-replication slippage, intramolecular
recombination, unequal sister chromatid
exchange, and unequal interallelic recombi-
nation or gene conversion (10). The fact
that no length change has been recorded
involving an exchange of flanking markers
eliminates a simple crossing-over model.
About half of the length mutations recorded
for three alleles studied by Jeffreys' group
(18) were formed through small patch
exchange between alleles, presumably
involving gene conversionlike events (a
process through which an allele in one of

the chromosomes is replaced by an allele in
the other chromosome). Some mutations
are of intraallelic origin. Anomalous repeats,
not corresponding to either allele may have
been brought about by mismatch repair.

Dubrova et al. (19) studied minisatel-
lite length germline mutations in male
mice induced by 0.5 or 1.0 Gy y-radiation.
The frequency of mutation was consider-
ably higher than other end points, but the
doubling dose effect was approximately the
same. The data indicated that the selection
against the mutations was insignificant.

Practical Application ofMinisatellite
Fingerprinting. The extreme individual
variation of minisatellite and microsatellite
pattern (below) has provided a new and
exceedingly efficient tool for the recognition
of individuals by their electrophoretic pat-
tern. Already in the original fingerprint
analysis the chance of two unrelated persons
exhibiting the same pattern was extremely
low-theoretically somewhere around
10-12. Later methodological improvements
have increased the sensitivity.

The possibility of amplifying DNA by
PCR has made it possible to use extremely
small material for minisatellite typing-
single hairs or tiny blood stains. The finger-
printing of satellite DNA -therefore has lent
itself to analyses in forensic medicine and
also in historical and archeological samples.
The use of minisatellite fingerprinting in
legal contexts has, however, caused much
debate. Critical comments have emphasized
the risk for deficient laboratory control,
lack of clear definition of match of elec-
trophoretic bands, dependence on the gel
system used, and the question of statistical
weight of apparent match between samples.
Furthermore, it has been pointed out by
the dominant critics Lewontin and Hartl
(20) that error may be brought up by varia-
tion in allele frequency between subpopula-
tions. A point of particular relevance in
paternity establishment are germline muta-
tions. Some prudence has been justified
when introducing minisatellite fingerprint-
ing, i.e., for forensic and legal purposes, but
it seems that these possible sources of errors
can be overcome and they are largely miti-
gated by the MVR-PCR typing system of
both alleles for both length variation and
internal variation (above). Although the
reliability of the fingerprinting method has
been questioned in some conspicuous legal
cases, the use of this tool nevertheless has
become more and more a routine procedure
in forensic medicine.

The occurrence of minisatellites and
other repetitive DNA sequences is not
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restricted to humans and other mammals,
but they have a wide distribution throughout
the organism world. The use of minisatellite
and microsatellite typing has become an
important and highly valuable new tool in
population ecology (21). Soon after the dis-
closure of the highly variable minisatellites
by Jeffreys and co-workers in humans, inves-
tigations by Burke and Bruford (22) showed
a pronounced variation in fingerprints
within and between bird species. A popula-
tion analysis of house sparrows through
analyses of blood samples from each individ-
ual by fingerprinting demonstrated the use-
fulness of fingerprint mapping for analyses of
population structure, mating selection, and
various polygamous pairing strategies.
Repetitive DNA sequences in sufficiently
stable minisatellites and microsatellites are
also of use in phylogenetic investigations of
evolutionary processes by comparisons of
species, subspecies, and populations.

Association ofMinisatellites with
Human Diseases. While no obvious evolu-
tionary advantage of minisatellites can be
discerned at the present state of our knowl-
edge, there are some cases of pathogenic
minisatellites. The best known case concerns
the minisatellite connected with the Ha-ras
protooncogene locus, HRASI VNTR This
minisatellite is located 1000 bp downstream
of the polyadenylation signal (23). It con-
tains repeat units of 28 bp, forming about
30 alleles. Four of these, comprising 94% of
the alleles, have given rise to the other alleles
(24). The rarer alleles are three times more
common in cancer patients than in controls
and these alleles are associated with multiple
forms of cancer. The data indicate that they
contribute to 1 of 11 cases of cancer (25).
The odds ratio for the association between
the rare HRAS1 minisatellite alleles and
cancer were, according to Krontiris et al.
(26), as shown in Table 1.

Concerning the mechanism behind the
association between the HRASI minisatel-
lites and cancer two possibilities have been
discussed (25,26). The rare alleles may
exhibit a linkage with a potential disease

Table 1. Odds ratio for the association between rare
HRAS1 minisatellite alleles and cancer.a

Type of cancer Odds ratio pValue

Bladder 2.30 >0.001
Breast 1.68 0.001
Colorectal 2.21 0.002
Leukemia 2.29 0.001
Lung 1.55 0.051
Melanoma 1.56 0.091

"Data from Krontiris et al. (26).

locus and these alleles would then just be
markers for the risk of cancer. Considering
the fact that the high-risk alleles derive
from all the four common alleles and pre-
sumably from many ancestral chromo-
somes, this hypothesis is not likely. An
alternative hypothesis is based on the find-
ing that the HRASI minisatellite binds to
the reINF-icB family of transcriptional
regulatory factors (27,28). It is suggested
that pathogenic minisatellite mutations
may disrupt nonpathogenic interactions
with rel proteins.
A somewhat similar pathogenic situation

is indicated for minisatellite mutations
linked to the insulin gene (INS). The mini-
satellite INS VNTR is located 600 bp
upstream of the transcriptional start site
(29). The minisatellite is composed of 14
bp repeat units arranged in three allelic
dasses with modal lengths of 600 (Class I),
1200 (Class II) and 2200 (Class III). The
presence of Class I minisatellite is associated
with a doubling of the relative risk for type I
diabetes mellitus (IDDM) (25). At least six
genes, IDDM 1 to 6, contribute to the risk
for diabetes, and IDDM2 has been mapped
to the INS VNTR minisatellite. The INS
minisatellite, furthermore, binds to a specific
transcription factor, Pur-1. However, in this
case the high-risk allele exhibits a weaker
transcriptional effect than the low-risk alle-
les. Nevertheless, the sequence composition
of the individual repeat units, in addition to
the total length of the minisatellite, govems
the transcriptional response (30).

It is likely that other pathogenic effects
of minisatellites will be revealed in the
future. It can be mentioned now that a
minisatellite upstream of the human
immunoglobulin heavy-chain gene IGH
enhancer may have a suppression effect on
immunoglobulin gene expression by tran-
scriptional control in the same way as
HRASI and INS minisatellites (31).

The minisatellites of the HRASI, INS
and IGH genes do not have any homolo-
gous counterpart in nonprimate genes and
it is therefore unlikely that they constitute
true transcriptional elements; rather, they
are recent acquisitions (25). It is more
likely that the variation of minisatellites
sometimes produces products that interact
with transcriptional factors and that, as
long as the effect on transcription keeps
within a narrow range, it will not be
strongly selected against (25).
Conclusions. The wide occurrence of
highly variable minisatellite sequences has
provided indispensable tools in genetic
linkage analyses, forensic medicine, pater-

nity determination and population ecology.
Also, it can be foreseen that the use of min-
isatellites and other repeated DNA
sequences will play an even more essential
role in the future, both in research and for
various practical applications.The reliability
of the fingerprinting of minisatellites for
legal purposes has been the subject of dis-
cussion and some controversy. However,
the application of new PCR techniques,
improved control of the laboratory proce-
dures, and more experience with minisatel-
lite patterns in subpopulations can be
expected to remove many of the problems
under discussion. The occurrence of patho-
genic minisatellites has given another
dimension to this field of research. The
HRASI minisatellite seems to be of major
importance in the cancer panorama-at
least 50,000 cases of cancer a year can be
expected to depend on the rare alleles of
this minisatellite (26). Another important
finding is the connection between a mini-
satellite linked with the insulin locus INS
and type I diabetes. A minisatellite linked
to the enhancer of the immunoglobulin
gene IGH is a third potentially important
case. In all these cases, the effect of the mini-
satellites seems to occur through binding
to transcription factors.

Mirsatdlites
Ocurrence. Microsatellites are repetitive
sequences of mostly 2 to 4 nucleotides with
a widespread occurrence particularly in
multicellular organisms. In the human
genome, dinucleotide repeats occur on
average every 30,000 bp and somewhat
less frequently for the more complex
units (32). These repeats therefore consti-
tute a significant part of human DNA.
Concerning the evolutionary significance
of microsatellites, hardly anything but dis-
advantages can be discerned. Several
human disorders have been attached to
amplification of microsatellite sequences
and other evidence of negative effects of
microsatellites can be traced. Formation of
tandem duplications of the short sequences
that build up microsatellites can easily
occur as an error during DNA replication,
and further amplification through strand
slippage can occur in successive DNA
replication, giving rise to longer stretches
of minisatellite repeats. An accumulation
of dispersed repeated sequences of simple
nucleotide units can be expected to imply
an increased risk of homologous recombi-
nation between chromosomal segments
and resulting in translocations, deletions,
and inversions. Filamentous ascomycetes
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such as Neurospora crassa do not seem to tol-
erate the burden that repetitive and appar-
ently useless DNA implies. Presumably as a
consequence, Neurospora has only 10%
repetitive DNA as compared to 50% in
higher organisms (33). To counteract the
accumulation of dispersed homologous
microsatellite sequences, these sequences are
subjected to a high mutation rate through
"repeat-induced point mutations" (RIP).
All repeated sequences above 1 kilobase in
Neurospora show signs of "RIPping." The
primary functf.n of RIP is to protect the
organism not 1y against "parasite DNA"
but also aga viruses and transposons
(33). Althou ;- seems that higher organ-
isms are less .sitive to these repeated
sequences, the1s are reasons to believe that a
similar protective device is operating also
(below). At our present state of knowledge
it is difficult to visualize any positive biolog-
ical function at least for most microsatellites
and it thus seems that they constitute true
"parasite" or "selfish" DNA in the sense
outlined by Orgel and Crick (1).

Although there are principal differences
between micro- and minisatellites, the bor-
derline between them is arbitrarily set on
the bases of the length of the repeat units.
From an evolutionary point of view, it is
likely that minisatellites can be generated
from microsatellites. Two hypotheses have
been presented to account for the common
core of minisatellites (34). According to a
transposition model proposed by Jeffreys et
al. (3), related core sequences between
minisatellites are the result of transposi-
tions mediated by sequences flanking the
minisatellites VNTR. In support of this
hypothesis, there are observations indicat-
ing an association of minisatellite VNTRs
with dispersed repetitive elements such as
human Alu and transposonlike sequences.
Sequence divergence is brought about by
subsequent mutational changes, which are
carried to other repeats of the tandem array
by unequal exchange. However, many
minisatellites with related core sequences
do not exhibit such an association with dis-
persed repeats flanking the tandem array
(3,34), making it unlikely that they
emanate from this kind of a transposition
process. Another model, the expansion
hypothesis, is based on the concept of core
sequences containing motifs that enhance
the expansion of tandem repeats indepen-
dently at different loci (3). Short tracts of
simple repeats would serve as the raw mate-
rial for expansion by slipped strand mis-
pairing into more complex minisatellites.
This model would predict that one could

trace the development from microsatellites
to minisatellites by "fossils" of microsatel-
lites in close association or interdispersed
with minisatellite VNTRs (34). Several
examples of such an association have
been recorded, indicating the generation of
minisatellites from microsatellites.

Analytial Methodsfor Microsatelites.
Simple tandem repeat loci have been
isolated from genomic libraries by hybrid-
ization screening, using relatively short
oligonucleotide repeat sequences. However,
the experience from isolation of minisatellite
loci suggests that the use of long (>200 bp),
tandemly repeated probes is more efficient
than short probes to isolate longer tandem
arrays; and longer probes would also better
tolerate interspersed variant repeats. Armour
et al. (35) therefore developed a more effi-
cient system for the isolation of short
repeats. Their system is based on a prior
enrichment for tandemly repeated DNA
fragments by hybridization to long tan-
demly repeated targets. A library of restric-
tion fragments with appropriate linkers
for PCR amplification is constructed.
From amplified fragments of 400 to 1000
bp, tandem repeat-containing fragments
are selected by hybridization to long arrays
of either mixed trimeric or mixed
tetrameric repeat sequences. Both natural
and synthetic sequences were used as tar-
gets in the hybridization selection. This
enrichment procedure enables a rapid iso-
lation of a large number of microsatellite
clones. In this way, Armour et al. isolated
46 tandem repeat arrays (27 tetrameric,
19 trimeric), which were sequenced and
characterized (35).

Instability and Mutational Changes.
Many microsatellites are unstable-in some
cases exceedingly so. In particular, CG-rich
trinucleotide and CA dinucleotide repeats
exhibit high instability and they are orders
of magnitude more variable than other tan-
dem repeats. The reason for this specificity
in instability is not known. In extreme cases
all cells in the organism have different
lengths of the microsatellite (32). The
instability is highly influenced by the length
of the microsatellite with an increased insta-
bility with increasing length. CG-rich trin-
ucleotides and CA dinucleotides form four
groups (32):
* Short repeat length-stable
* Repeats of middle length-polymor-

phic, but stable between generations
* Long alleles-instability increased by

several orders of magnitude, constitut-
ing "premutational alleles," which are
not stable between generations

* Long and extremely unstable alleles,
also exhibiting mitotic instability. For
fragile X the likelihood of instability
was as follows: below 50 repeats, no
risk; around 60 repeats, low risk; 70 to
86 repeats, high risk; above 86 repeats,
absolute likelihood (36).
The most common repeat length muta-

tions involve only relatively small changes.
In vitro studies have indicated that strand
slippage during DNA replication constitutes
the major cause of these length mutations
(37). Furthermore, there is a connection
between replication slippage and DNA
repair, as is indicated by mutations in DNA
repair, giving rise to increased instab ilty. In
Saccharomyces, mutations in mismatch
repair genes increased replication slippage
100 to 700 times in poly-(GT) repeats (38).
Infrequently, huge length increases occur,
resulting in the extreme instability of the
long alleles group above. This sudden
increase in trinucleotide repeat length,
which causes several human diseases, must
involve some mechanism other than replica-
tion slippage. In cell culture 1000-fold
amplification has been observed for the
dihydrofolate reductase gene (39). This
drastic amplification involves an episomal
mechanism. The gene is excised and copied,
presumably by a rolling circle process, and
reintegrated into nonhomologous chromo-
somal sites. This mechanism, however, is
not the likely one to explain the amplifica-
tion of trinucleotide repeats. Unlike the case
with the episomal mechanism, the amplifi-
cation of trinucleotides never involves sur-
rounding DNA and it always occurs in situ.
A model to explain the expansion of trinu-
cleotides (32) takes into consideration the
difficulty in replicating CG-rich sequences
by polymerases (36). It is possible that
replication of these repeats gives rise to pre-
mature termination and reinitiation events,
generating multiple incomplete strands.
Extensive increases in length can then be
induced by a strand switching between the
incomplete strands. This model predicts
that an increased rate and an increased
length of the expansion will occur with
increasing initial length of the trinucleotide
sequence. These predictions have been
experimentally observed (36).

Repeat-induced Point Mutations. The
accumulation of repeated sequences, par-
ticularly of microsatellites, implies a risk
for homologous recombination between
dispersed repeats, causing translocation and
other chromosomal aberrations. Fungi
like Neurospora (above) are less tolerant
towards such repeated sequences than
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higher multicellular organisms, and they
have developed defense mechanisms
against homologous repeated deletions by
RIP (33). RIP recognizes duplicated
sequences and induces G.C to A.T muta-
tion. This mutation is associated with
methylation of cytosin and a high fre-
quency of recombination between tandem
repeats. Both alleles are mutated in this
process, and the genetic mechanism seems
to be comparable to the recognition of
homologous sequences by recombination
processes. At the molecular level, the high
frequency of G.C to A.T transitions is
probably caused by enzymatic deamination
of cytosin or 5-methylcytosine. The nor-
mal repair of these lesions may be turned
off in ascogenous tissue or overwhelmed by
RIP. This mutational process may be an
integral part of "genome cleaning" during
the period between fertilization and karyo-
gamy in fungi, which also includes a high
frequency of intrachromosomal recombina-
tion, deleting tandemly repeated genes. The
sequence divergence by RIP can be suffi-
cient to prevent recognition of homology
and subsequent recombination between dis-
persed DNA regions. This form of genetic
instability potentially stabilizes the gross
organization of the genome (33).

Another form of RIPping has been
described by Rand (40) in the mitochondr-
ial DNA in crickets (Gryllus). A repeated
sequence of 220 bp in length was found to
be a hot spot for point mutations, deletions,
and insertions. The mutational changes
were localized in and around a 14 bp G.C-
rich sequence. This mutation process appar-
ently involves a mechanism other than the
RIPing in Neurospora, as neither methyla-
tion nor a bias towards G.C to A.T muta-
tions was observed in the cricket mtDNA.
As it is not clear if these mutations are
induced by the repeats or associated with
the repeats, this process has been named
repeat associated point mutation (RAP).

The potential genetic and biological
disadvantages of repeated sequences, such
as microsatellites, can be expected to be of
general relevance, although the threshold
for negative effects presumably is higher in
higher organisms. Kricker et al. (41) have

Table 2. Mismatch repair genes.a

E coli S. cerevisiae Homo % HWPCC
MutS MSH2 hMSHW < 50
MutL MLH1 hMLH1 <30
MutL PMS1 hPMS1 Few cases
MutL hPMS2 Few cases

aData from Fishel and Kolodner (46).

pointed out that vertebrate chromosomes
would be threatened by illegitimate recom-
bination between repeated sequences, such
as mobile elements and pseudogenes. To
counteract this "genetic time bomb," a
strategy based on methylation and associ-
ated mutations through methylation and
deamination of 5-methylcytosine in CpG
has been developed.

Instability andMismatch Repair. The
stability of microsatellites is dependent on
an intact mismatch DNA repair. The loss
of this repair function in Saccharomyces
increased the instability of microsatellites
drastically (above). The data on yeast indi-
cated that the strong effect on the stability
of poly (GT) recorded depended on errors
in the excision of mismatch bases after
DNA slippage, most ofwhich are corrected
by mismatch repair in wild-type cells (38).
The discovery of a similar case with colon
cancer has attracted much attention.
Fifteen percent of colorectal cancers have a
hereditary background, hereditary non-
polyposis colon cancer (HNPCC). One
gene involved in this cancer was localized
to chromosome 2 and linked to this locus
was a microsatellite with an array of AC
repeats. In the tumors ofHNPCC patients,
mutations in this gene caused an extensive
instability, not only of the AC repeats
linked to the gene, but also of microsatel-
lites elsewhere in the genome, which were
subjected to thousands of changes (42,43).
The gene in chromosome 2, responsible for
the genetic instability of HNPCC tumors,
was homologous to the mismatch repair
gene MutS in E. coli and MSH2 in yeast
(44,45). Subsequently, three more human
genes, homologous with the mismatch
repair genes in E. coli and yeast, have been
linked to HNPCC (46) (Table 2). Parsons
et al. (47) recently reported a subset of
HNPCC patients with a high frequency of
microsatellite mutations not only in their
tumors but also in nonneoplastic cells.
These patients furthermore had very few
tumors, showing that deficient mismatch
repair and succeeding mutations can be

Table 3. Diseases associated with trinucleotide reiteratior

compatible with normal development and
not sufficient for tumor development. On
the other hand, instability of microsatellites
is also generated by mechanisms other than
deficient mismatch repair genes-for exam-
ple, deficiency in exonuclease (48). Several
cancer forms have been found to be associ-
ated with microsatellite instability; these
include gastric, pancreatic endometrial,
Barrett's esophageal, and lung cancer (49).

Association ofMicrosatellites with
Human Diseases. The previous section
dealt with microsatellite instability in con-
nection with DNA repair deficiency and the
association of this instability with cancer.
This association between microsatellite
instability and the disease is not a causal
one, but presumably a common result of the
lack of mismatch repair of DNA. However
microsatellites have attracted a great deal of
attention in recent years because of a direct
connection between expanded arrays ofCG-
rich trinucleotides and several human
neurological diseases. Table 3 shows five
diseases of trinucleotide reiteration that have
been characterized (50).

The microsatellite sequence in these
diseases are linked to a coding gene,
which is affected by the expansion of the
trinucleotide sequence. These cases of
microsatellite-dependent disease represent
two classes. Fragile X and myotonic dystro-
phy have their trinucleotide sequence
linked to the noncoding ends of the gene,
while in the three diseases with CAG
expansion, coding for polyglutamine, the
microsatellite is located within the coding
part of the gene. An initial increase of the
trinucleotide sequence functions as a pre-
mutational event. Above a critical number
of repeats, the system becomes unstable and
usually more sequences are added, eventu-
ally resulting in symptoms. Another charac-
teristic of these diseases is the fact that the
symptoms tend to be more severe in subse-
quent generations because of amplification
during gametogenesis or in the zygote, a
process named genetic anticipation. This
anticipation is sex linked and inter alia

Reiterated Normal range Disease range
Disease range trinucleotide of reiteration of reiteration

Spinal and bulbar muscular CAG 11-33 40-62
atrophy, Kennedy's disease

Huntington's disease CAG 11-34 42-100
Spinocerebellar ataxia type 1 CAG <29-36 43->60
FragileX CGG 6-54 250-4000
Myotonic dystrophy CTG 5-30 > 50

aData from Green (50).
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occurs through the mother in fragile X and
myotonic dystrophy but through the father
in Huntington's disease. This process of
anticipation is connected with methylation
of cytosine and genetic imprinting.

Fragile X was the first recognized case
of a genetic disease with an instability of
trinucleotide repeats. It is a common neu-
rological disease that causes mental retarda-
tion, which is inherited as an X-linked
dominant trait. It is manifested by chro-
mosome breakages at specific sites. The
disease is associated with an expansion of a
microsatellite repeat ofCGG trinucleotides
in the 5' untranslated end of the gene
FMRJ. This leads to a hypermethylation of
the promoter region and a down regulation
of the gene expression. The mechanism of
inactivation of neighboring loci by non-
coding repeats has a counterpart in the het-
erochromatization of euchromatin by
tandem repeats as observed in Arabidopsis
and in Drosophila (51). Although the insta-
bility of the trinocleotide repeats depends
on the length of the sequence, the length at
which an instability of the microsatellite
begins to occur varies between 35 and 55
repeats. This long "gray zone" was shown
by Eichler et al. (52) to depend on the
interspersion by AGG trinucleotides. Most
alleles of CGG repeats contain two AGGs
and the instability depends on the number
of uninterrupted CGG repeats. The unin-
terrupted length under which the mini-
satellite is stable turned out to be 34 to 37
CGGs, which is in agreement with the cor-
responding number in other triplet repeat
diseases including myotonic dystrophy,
Kennedy's disease, Huntington's disease,
spinocerebellar ataxia, and dentatorubral
pallidoluyisian atrophy. The loss ofAGG
causes an increased uninterrupted length of
CGG sequences and is therefore probably
an important mutational event for the pre-
disposition to fragile X. The mechanism of
expansion of the trinucleotide sequence
presumably rests on slippage during DNA
replication. To explain the rapid expansion
of a large sequence of triplets, Eichler et al.
(52) argue in favor of a slippage mecha-
nism dependent on the lagging and leading
strand. Based on the observed polarity of
expansions at the 3' end, they propose a
slippage process involving a whole Okasaki
fragment, spanning 150 to 200 bp within
trinucleotide repeat alleles of about 70
CGGs (210 bp). Concerning the non-
mendelian increase of the effect of mutated
genes from one generation to the next, this
"anticipation" has been reported as a
postzygotic process in fragile X syndrome,

while premutational increase takes place
during meiosis (51).

Myotonic dystrophy, another neurologi-
cal disease, depends on an expansion of a
sequence ofCTG at the 3' untranslated end
of the gene myotonic dystrophy protein
kinase (MDPK). The expanded trinu-
deotide sequence eliminates transcription of
MDPK Above a threshold of about 146 bp
no mRNA for MDPK could be observed
(53). An increased nucleosome binding of
such expanding repeats, leading to a tran-
scriptional repression, has been proposed as
a mechanism (53). It has further been
shown that the increased nucleosome bind-
ing exerts an effect on the post-transcrip-
tional processing of the transcript from
expanded alleles but not on the initiation of
the transcription (54). The threshold for
the symptoms of myotonic dystrophy of
146 bp corresponds with the DNA length
for a nucleosome (53).

Huntington's disease is an autosomal
neurodegenerative disorder that depends
on an expansion of CAG tandem repeats,
giving rise to polyglutamin. This micro-
satellite is located within the coding region
of the Huntington's disease gene, HD or
IT15, which codes for the protein hunt-
ingtin. Although the disease is dependent
on the stretch ofCAG repeats, the instabil-
ity giving rise to an expansion of the polyg-
lutamine array seems to be influenced by
another trinucleotide repeat of CCG
downstream of the CAG repeat, coding for
proline (55). Huntington's disease usually
has a late onset, but with increasing expan-
sion of the trinucleotide repeats, due to
"anticipation" through male gametes, the
symptoms become more severe and onset
earlier in subsequent generations. The
function of huntingtin is not known and
its expression is similar in patients and con-
trols. The length expansion makes the pro-
tein not merely useless, but actively
harmful by a gain of function. Zeitlin et al.
(56) showed that huntingtin is indispens-
able, as null mutation of the huntingtin
gene in mice caused death of the embryo.
The data on mice further suggested that
huntingtin is involved in counterbalancing
programmed cell death, apoptosis (56).
Reports by Li et al. (57) indicate that the
pathological effects by the expansion of the
CAG repeats depend on interaction
between huntingtin and other cellular pro-
teins. They identified a protein, hunt-
ingtin-associated protein, HAP-1, that
binds to huntingtin.This binding is
enhanced by an expanded polyglutamine.
The HAP-1 protein is enriched in the

brain, which may explain the localized
effect of the disease to brain tissue.

Spinal and bulbar muscular atrophy,
Kennedy's disease, is an X-linked disease
and the only polyglutamine-dependent
neurological disorder for which the func-
tion of the protein involved is known. It
constitutes the androgen receptor (AR),
which is a ligand-activated transcription
factor. The AR contains, in the coding
region, the polyglutamine tract by CAG
repeats. As in the other microsatellite-
dependent diseases, the severity of the dis-
ease is correlated with the expansion of the
microsatellite. Chamberlain et al. (58)
showed that progressive expansion of the
polyglutamine tract in human AR caused a
linear decrease in the binding of the recep-
tor to androgen and a decrease in activat-
ing transcription of AR-responsive genes.
However, the data indicated that there was
a threshold, as the expansion of the trinu-
cleotides did not completely eliminate AR
activity, and that the residual activity
was sufficient to develop male primary and
secondary sex characteristics.

Inactivation Mechanisms by Poly-
glutamine. Many data on the relationship
between expansion of trinucleotides and
neurological disorders are now available,
but the mechanistic cause of the effects of
the expanded repeats at a molecular level is
not clear. An attractive possibility is that
long trinucleotide repeats confer structural
changes of DNA, and that these changes
constitute the ultimate reason for the
pathological behavior. Yano-Yanagisawa et
al. (59) found in the mouse brain two trin-
ucleotide repeat-binding proteins-TRIP-1
and TRIP-2-which bind specifically to
repeats of AGC, AGT, GGC, and GGT,
but no other trinucleotides. The AGC-
repeat binding activity is of interest con-
cerning polyglutamine. (CAG)-repeats were
found to contain clusters of non-B DNA
structural units, formed by each AGC trin-
ucleotide repeating unit: 5'......(C AG)(C
AG)(C AG)(C AG)........3'. In non-B DNA,
cytosines are specifically base unpaired. The
property of trinucleotides to adopt an
unusual DNA structure may contribute to
their abnormal behavior. Recently Gacy et
al. (60) presented data suggesting that hair-
pin formation in microsatellite repeated
sequences may provide a common explana-
tion for several characteristics of simple
nucleotide repeat expansion and pathologi-
cal effects. Hairpin formation and stability
are correlated with the length of the repeat
sequence. They would, for example, explain
the stabilizing effect ofAGG punctuation
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on FMRI in Fragile X (above) on the basis
of its interruption of hairpin stability. The
repeats that form hairpin structures would
disrupt normal DNA replication. Above a
critical threshold length, stable hairpin
structures are formed, leading to replication
errors and further expansion.

There are other neurological diseases
with characteristics that resemble the ones
established as dependent on polyglutamine
expansion, such as the phenomenon of
anticipation. It is therefore likely that more
such neurological disorders will be added to
this class of polyglutamine degenerative dis-
eases. The discovery of proteins that inter-
act with polyglutamine stretches with an
intensity dependent on the length of CAG
repeats opens new possibilities for identify-
ing other disorders of this type. Trottier et
al. (61) have characterized a monoclonal
antibody that selectively recognizes polyglu-
tamine expansions in Huntington's disease,
spinocerebellar ataxia SCAI and Machado-
Joseph disease SCA3-all known gluta-
mine-repeat disorders. An expansion of
polyglutamine was detected in this way
with spinocerebellar ataxia SCA2 and the
dominant cerebellar ataxia with retinal
degeneration. There are indications that
schizophrenia and bipolar disorders may
belong to the same group of diseases.
O'Donovan et al. (62) found that schizo-
phrenia patients and patients suffering from
bipolar disorders had expanded trinu-
cleotide sequences of CAG and its comple-
ment CTG as compared to controls. The
connection between expanded trinucleotide
CAG repeats and degenerative disorders may
open the possibility in the future to design
therapeutic molecules that would interfere
with abnormal polyglutamine stretches.

Telomeres
The ends of the chromosomes in most
organisms consist of a tandem array of

simple DNA sequences, constituting the
telomeres [Zakian (63) presents a recent
review]. This arrangement of the chromo-
some ends is dictated by the fact that the
DNA polymerase cannot reproduce both
DNA strands to the ends without losing
the tip sequence of one of the strands.
Therefore the tip of the chromosomes is
organized with noncoding repeated
sequences, which can be lost without losing
coding DNA [Ligner et al. (64) present a
recent overview]. The telomeres can be
replaced by a protein-RNA enzyme, telom-
erase. Most telomeric repeat sequences are
short, usually 5 to 8 bp, in mammals
TTAGGG. Drosophila has an exceptional
telomere structure without the short con-
servative repeats of the telomeres of most
other organisms (65). Instead, Drosophila
has one or more elements like long inter-
spersed elements (LINE) mobile elements,
and the replacement of the telomeres
occurs by transposition of the telomere
sequence to the chromosome ends.
Proximal to the LINE sequences in
Drosophila there is a sequence of tandem
repeats, which probably are analogous to
the subterminal middle repetitive regions,
telomere-associated (TA) DNA, in other
eukaryotes. The array ofTA can expand or
contract by means of a recombination
mechanism. The composition of telomere-
repeated sequences varies considerably
among organisms, and evidently the telom-
ere function does not require a specific
DNA sequence. The DNA strand, which
runs from 5' to 3' towards the end, has reg-
ularly more G residues, arranged in clus-
ters, than the other strand. At least in
ciliated protozoans, such as Tetrahymena
and Oxytrichia, and in yeast the G strand is
extended to form a single-strand G tail.
The G strand can form non-Watson-Crick
base pairing structures, such as four-
stranded helices and multiple G-G base

pairs. It is possible that this property is
essential for the bouquet stage, formed by
the telomeres during meiosis.

The function of the telomeres is to
protect the ends of the chromosomes, not
only from losing genetic material at each
cell division, but also to prevent the ends
from fusing with each other. As was shown
by McClintock (66), broken chromosome
ends fuse with each other, forming dicen-
tric bridges and a breakage-fusion-bridge
cycle. Because of the loss of DNA at the
chromosome ends the telomeres have to be
replicated in another way than the rest of
the chromosomes. This replication is
acquired by telomerase, which has a unique
composition of protein and an RNA com-
ponent. The protein part consists of two
subunits in Tetrahymena (67). The replica-
tion of the telomere occurs by means of
reverse transcriptase from the RNA com-
ponent. In Drosophila this replication is
performed through transposition of the
telomere sequence (above). In humans
most somatic tissues lose their telomerase
activity and consequently the chromosome
ends will shorten at each cell division, lead-
ing to the eventual death of the cell. This
has led to the hypothesis that the telomere
length functions as a biological clock,
resulting in a programmed cell death after
a certain number of cell divisions (68). In
actual measurement of the telomerase
activity in normal and immortal cancer
cells telomerase activity was invariably
repressed in normal somatic cells but was
reactivated in various cancer cells (69).
The important observation that the
immortality of malignant cells is associated
with telomerase activity has led to specula-
tion that the telomere might constitute a
target for cancer therapy. Similar specu-
lations can also be applied concerning
prevention of aging by reactivation of
telomerase activity.
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